#Compare the results in terms of accuracy, precision and recall from sklearn.metrics import accuracy_score, precision_score, recall_score accuracy_log = accuracy_score(y_test, y_pred_log) precision_log = precision_score(y_test, y_pred_log) recall_log = recall_score(y_test, y_pred_log) accuracy_knn = accuracy_score(y_test, y_pred_knn) precision_knn = precision_score(y_test, y_pred_knn) recall_knn = recall_score(y_test, y_pred_knn) print("Comparison of Models:") print(f"{'Model':<20}{'Accuracy':<10}{'Precision':<10}{'Recall':<10}") print(f"{'Logistic Regression':<20}{accuracy_log:.2f} {precision_log:.2f} {recall_log:.2f}") print(f"{'KNN':<20}{accuracy_knn:.2f} {precision_knn:.2f} {recall_knn:.2f}")