New paste Repaste Download
Combining **OpenCV** with **TMSU** creates a powerful workflow for analyzing images, generating tags automatically, and then managing those tags with TMSU. Below is a step-by-step guide:
---
### **Step 1: Install OpenCV and TMSU**
1. **Install OpenCV**:
   ```bash
   pip3 install opencv-python opencv-python-headless
   ```
2. **Install TMSU**:
   ```bash
   sudo apt install tmsu
   ```
---
### **Step 2: Image Analysis with OpenCV**
We’ll use OpenCV to analyze images, detect objects (e.g., using YOLO or MobileNet-SSD), and generate tags.
Save the following Python script as `opencv_tmsu.py`:
```python
import cv2
import numpy as np
import os
import subprocess
# Load YOLO model
config_path = "yolov4.cfg"  # Path to YOLO config file
weights_path = "yolov4.weights"  # Path to YOLO weights
labels_path = "coco.names"  # Path to class labels
# Load class labels
with open(labels_path, "r") as f:
    labels = [line.strip() for line in f.readlines()]
# Load the network
net = cv2.dnn.readNetFromDarknet(config_path, weights_path)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
# Function to analyze image and generate tags
def analyze_image(image_path):
    image = cv2.imread(image_path)
    (h, w) = image.shape[:2]
    # Prepare the input blob
    blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)
    net.setInput(blob)
    # Perform inference
    layer_names = net.getLayerNames()
    output_layer_indices = net.getUnconnectedOutLayers()
    output_layers = [layer_names[i - 1] for i in output_layer_indices.flatten()]
    detections = net.forward(output_layers)
    # Extract tags
    tags = []
    confidence_threshold = 0.5
    for output in detections:
        for detection in output:
            scores = detection[5:]
            class_id = np.argmax(scores)
            confidence = scores[class_id]
            if confidence > confidence_threshold:
                tag = labels[class_id]
                tags.append(tag)
    return set(tags)  # Return unique tags
# Function to assign tags to files using TMSU
def tag_with_tmsu(file_path, tags):
    for tag in tags:
        cmd = ["tmsu", "tag", file_path, tag]
        subprocess.run(cmd)
# Main processing
if __name__ == "__main__":
    image_dir = "images"  # Directory containing images
    for image_file in os.listdir(image_dir):
        if image_file.endswith((".jpg", ".png", ".jpeg")):
            image_path = os.path.join(image_dir, image_file)
            print(f"Analyzing {image_file}...")
            tags = analyze_image(image_path)
            print(f"Tags for {image_file}: {tags}")
            
            # Assign tags to file using TMSU
            tag_with_tmsu(image_path, tags)
            print(f"Tags added to {image_file} in TMSU.\n")
```
---
### **Step 3: Prepare the Environment**
1. **Ensure YOLO Files are Available**:
   Download the YOLO model files (as in the previous steps):
   ```bash
   wget https://github.com/pjreddie/darknet/blob/master/cfg/yolov4.cfg
   wget https://pjreddie.com/media/files/yolov4.weights
   wget https://github.com/pjreddie/darknet/blob/master/data/coco.names
   ```
2. **Organize Images**:
   Place your images in a directory named `images/`.
3. **Initialize TMSU**:
   Initialize TMSU in the directory where the `images` folder is located:
   ```bash
   tmsu init
   ```
---
### **Step 4: Run the Script**
Run the Python script to analyze the images and tag them using TMSU:
```bash
python3 opencv_tmsu.py
```
---
### **Step 5: Verify Tags**
To check the tags assigned to a file:
```bash
tmsu tags images/your_image.jpg
```
To search for files by tags:
```bash
tmsu files person
```
---
### **Optional: Virtual Directory for Tags**
Mount a virtual directory to browse files by tags:
```bash
tmsu mount ~/tmsu-virtual
```
Navigate to `~/tmsu-virtual` to see files organized by tags.
Unmount when done:
```bash
fusermount -u ~/tmsu-virtual
```
---
### **Summary**
This setup uses OpenCV to analyze images and extract object tags, which are then assigned to files using TMSU. The tags can be used for efficient file organization and retrieval through TMSU's tagging and query system. Let me know if you need help customizing this workflow!
Filename: None. Size: 4kb. View raw, , hex, or download this file.

This paste expires on 2024-11-27 05:58:02.874132. Pasted through web.